Закон ома

Законы Фарадея и Ленца

Законы Фарадея и Ленца отображают закономерности возникновения электромагнитной индукции.

Фарадей выявил, что магнитные эффекты появляются в результате изменения магнитного потока во времени. В момент пересечения проводника переменным магнитным током, в нем возникает электродвижущая сила, которая приводит к возникновению электрического тока. Генерировать ток может как постоянный магнит, так и электромагнит.

Ученый определил, что интенсивность тока возрастает при быстром изменении количества силовых линий, которые пересекают контур. То есть ЭДС электромагнитной индукции пребывает в прямой зависимости от скорости магнитного потока.

Согласно закону Фарадея, формулы ЭДС индукции определяются следующим образом:

Е = — dФ/dt.

Знак «минус» указывает на взаимосвязь между полярностью индуцированной ЭДС, направлением потока и изменяющейся скоростью.

Согласно закону Ленца, можно охарактеризовать электродвижущую силу в зависимости от ее направленности. Любое изменение магнитного потока в катушке приводит к появлению ЭДС индукции, причем при быстром изменении наблюдается возрастающая ЭДС.

Если катушка, где есть ЭДС индукции, имеет замыкание на внешнюю цепь, тогда по ней течет индукционный ток, вследствие чего вокруг проводника появляется магнитное поле и катушка приобретает свойства соленоида. В результате вокруг катушки формируется свое магнитное поле.

Э.Х. Ленц установил закономерность, согласно которой определяется направление индукционного тока в катушке и ЭДС индукции. Закон гласит, что ЭДС индукции в катушке при изменении магнитного потока формирует в катушке ток направления, при котором данный магнитный поток катушки дает возможность избежать изменения постороннего магнитного потока.

Закон Ленца применяется для всех ситуаций индуктирования электротока в проводниках, вне зависимости от их конфигурации и метода изменения внешнего магнитного поля.

Watch this video on YouTube

От электростатики к электрокинетике

Между концом XVIII и началом XIX века работы таких учёных, как Кулон, Лагранж и Пуассон, заложили математические основы определения электростатических величин. Прогресс в понимании электричества на этом историческом этапе очевиден. Франклин уже ввёл понятие «количество электрической субстанции», но пока ещё и он, ни его преемники не смогли его измерить.

Следуя за экспериментами Гальвани, Вольта пытался найти подтверждения того, что «гальванические жидкости» животного были одной природы со статическим электричеством. В поисках истины он обнаружил, что когда два электрода из разных металлов контактируют через электролит, оба заряжаются и остаются заряженными несмотря на замыкание контура нагрузкой. Это явление не соответствовало существующим представлениям об электричестве потому, что электростатические заряды в подобном случае должны были рекомбинировать.

Вольта ввёл новое определение силы, действующей в направлении разделения зарядов и поддержании их в таком состоянии. Он назвал её электродвижущей. Подобное объяснение описания работы батареи не вписывалось в теоретические основы физики того времени. В Кулоновской парадигме первой трети XIX века э. д. с. Вольта определялась способностью одних тел вырабатывать электричество в других.

Советуем изучить — Техническая диагностика и методы технического диагностирования

Важнейший вклад в объяснение работы электрических цепей внёс Ом. Результаты ряда экспериментов привели его к построению теории электропроводности. Он ввёл величину «напряжение» и определил её как разность потенциалов на контактах. Подобно Фурье, который в своей теории различал количество тепла и температуру в теплопередаче, Ом создал модель по аналогии, связывающую количество перемещаемого заряда, напряжение и электропроводность. Закон Ома не противоречил накопленным знаниям об электростатическом электричестве.

Затем, благодаря Максвеллу и Фарадею, пояснительные модели тока получили новую теорию поля. Это позволило разработать связанную с полем концепцию энергии как для статических потенциалов, так и для электродвижущей силы. Основные даты эволюции понятия ЭДС:

  • 1800 г. — создание Вольтой гальванической батареи;
  • 1826 г. — Ом формулирует свой закон для полной цепи;
  • 1831 г. — обнаружение электромагнитной индукции Фарадеем.

ЭДС и циркуляция вектора напряженности электрического поля

Рассмотрим случай, когда электрический ток течет по тонкому проводу. Направление тока совпадает с направлением оси провода (рис.1). Что обеспечивается соответствующим распределением зарядов на поверхностях проводников или там, где действуют сторонние силы.

Рисунок 1. Электрический ток в тонком проводе. Автор24 — интернет-биржа студенческих работ

Площадь поперечного сечения провода будем считать равным $S$, в разных местах провода она может отличаться. Поскольку наш провод мы считаем тонким, то плотность тока ($\vec j$) считаем одинаковой для всех точек поперечного сечения проводника. Сквозь поперечное сечение провода за единицу времени будет проходить заряд:

$\frac{\Delta q}{\Delta t}=I=jS\, \left( 1 \right)$.

где $I$ — сила тока. При постоянной силе тока, в результате сохранения заряда, величина $I$ будет одной и той же по всей длине провода. Положим, что в проводе (рис.1) работают сторонние силы, например, имеется гальванический элемент ($G$). Запишем дифференциальную форму закона Ома в виде:

$\vec{E}+\vec{E}_{st}=\frac{\vec{j}}{\lambda }=\frac{I}{\lambda S}\vec{i}\left( 2 \right)$,

где $\vec{i}$– единичный вектор, указывающий направление течения тока; λ – коэффициент проводимости.

Умножим полученное выражение (2) на элемент длины провода ($dl$) и возьмем интеграл по участку проводника от точки 1 до точки 2 (рис.1), считая силу тока неизменной:

$\int\limits_1^2 \vec{E} d\vec{l}+\int\limits_1^2 {\vec{E}_{st}d\vec{l}}=I\int\limits_1^2 \frac{d\vec{l}}{\lambda S} \left( 3 \right)$.

Поскольку электрическое поле является потенциальным, то имеем:

$\int\limits_1^2 \vec{E} d\vec{l}=\varphi_{1}-\varphi_{2}\left( 4 \right)$.

$\varphi_{1}-\varphi_{2}$ – разность потенциалов.

Второй интеграл отличен от нуля внутри источника тока, где E ⃗_st≠0. Данный интеграл не зависит от положения начальной и конечной точки 1 и 2. Необходимо только, чтобы данные точки были вне источника тока. Так как поле сторонних сил потенциально там, где действуют эти силы, интеграл не зависит от пути интегрирования в элементе. Это означает, что данный интеграл – это параметр, который характеризует свойства источника тока. Такую величину называют электродвижущей силой элемента:

$Ɛ=\int\limits_1^2 {\vec{E}_{st}d\vec{l}} =\int\limits_3^4{\vec{E}_{st}d\vec{l}} \left( 5 \right)$.

Электродвижущая сила (ЭДС) больше нуля, если направление пересечения пути 1-2 дает от катода к аноду и является отрицательной в ином случае.

Интеграл в правой части выражения (3) – это характеристика проводника, сопротивление:

$R=\int\limits_1^2 \frac{d\vec{l}}{\lambda S} \left( 6 \right)$.

Используя сказанное выше, запишем закон Ома в интегральной форме:

$\varphi_{1}-\varphi_{2}+Ɛ=IR\, \left( 7 \right)$,

где $R$ – сопротивление всего участка цепи, включая источник тока.

Если цепь является замкнутой, то закон Ома предстанет в виде:

$Ɛ=IR\, \left( 8 \right)$.

$R$ — полное сопротивление всей цепи.

Допустим, что $\varphi_{a}$ – потенциал анода источника;$\varphi_{k}$ – потенциал катода; $R_e$ — сопротивление всего внешнего участка цепи, тогда:

$\varphi_{a}-\varphi_{k}=IR_{e}\left( 9 \right)$.

Сравнив выражение (8) и (9) запишем:

$\frac{\varphi_{a}-\varphi_{k}}{Ɛ}=\frac{R_{e}}{R}=\frac{R_{e}}{R_{e}+r}\left( 10 \right)$.

где $r$ — внутреннее сопротивление источника.

Выражение (10) означает, что $\varphi_{a}-\varphi_{k}$ меньше, чем ЭДС. В предельном случае, когда $R_{e}\to \infty $. получим:

$\varphi_{a}-\varphi_{k}=Ɛ\left( 11 \right)$.

Электродвижущую силу можно определить как разность потенциалов полюсов разомкнутого источника.

Индуктивность

Индуктивность — это способность накапливать магнитное поле. Она характеризует способность проводника сопротивляться электрическому току. Проще всего это делать с помощью катушки, потому что катушка состоит из витков, которые представляют собой контуры. Вспомните про магнитный поток и обруч под дождем — в контуре создается магнитный поток. Где поток, там и электромагнитная индукция.

Индуктивность контура зависит от его формы и размеров, от магнитных свойств окружающей среды и не зависит от силы тока в контуре.

Как работает катушка

Вокруг каждого проводника, по которому протекает ток, образуется магнитное поле. Если поместить проводник в переменное поле — в нем возникнет ток.

Магнитные поля каждого витка катушки складываются. Поэтому вокруг катушки, по которой протекает ток, возникает сильное магнитное поле. При изменении силы тока в катушке будет изменяться и магнитный поток вокруг нее.

Задачка раз

На рисунке приведен график зависимости силы тока от времени в электрической цепи, индуктивность которой 1 мГн. Определите модуль ЭДС самоиндукции в интервале времени от 15 до 20 с. Ответ выразите в мкВ.

Решение

За время от 15 до 20 с сила тока изменилась от 20 до 0 мА. Модуль ЭДС самоиндукции равен:

Ответ: модуль ЭДС самоиндукции с 15 до 20 секунд равен 4 мкВ.

Задачка два

По проволочной катушке протекает постоянный электрический ток силой 2 А. При этом поток вектора магнитной индукции через контур, ограниченный витками катушки, равен 4 мВб. Электрический ток какой силы должен протекать по катушке для того, чтобы поток вектора магнитной индукции через указанный контур был равен 6 мВб?

Решение

При протекании тока через катушку индуктивности возникает магнитный поток, численно равный Ф = LI.

Отсюда индуктивность катушки равна:

Тогда для достижения значений потока вектора магнитной индукции в 6 мВб ток будет равен:

Ответ: для достижения значений потока вектора магнитной индукции в 6 мВб необходим ток в 3 А.

Электромагнитная индукция и ее роль в электротехнике

Электромагнитная индукция – это явление, при котором электрический ток появляется в замкнутом контуре магнитного поля. Данное явление было открыто М. Фарадеем в первой половине 19 века. Так, ученый смог обнаружить тот факт, что электродвижущая сила, которая возникает в замкнутом контуре, может быть пропорциональна изменению скорости магнитного поля, проходящего через поверхность данного контура. Стоит отметить, что ток, который был вызван электродвижущей силой, носит название «индукционный».

Закон Фарадея – что и как?

Майкл Фарадей смог экспериментально установить, что в процессе изменения магнитного потока, возникает электродвижущая сила, которая равна скорости магнитного потока через всю поверхность, которая ограничена контуром. Данная закономерность и получала название закон Фарадея или же закон электромагнитной индукции.

Следует отметить, что данный опыт говорит о том, что индукционный электрический ток, который появляется в замкнутом контуре в процессе вариации магнитного потока, направлен таким образом, что возникшее магнитное поле останавливает вариацию магнитного потока. Именно поэтому в замкнутом контуре и вызывается индукционный ток.

Закон Фарадея может быть записан следующим образом:

ε = -dФВ/dt где,

ε – это ЭДС, которая движется вдоль контура поля в произвольной форме.

Роль электромагнитной индукции в электротехнике

Закон, который был открыт Фарадеем, сыграл большую роль в развитии электротехники. Дело в том, что после открытия данного закона, стало возможным получать электрический ток при помощи магнитного поля. Если говорить простыми словами, то закон электромагнитной индукции – это своего рода обратный процесс, который позволяет превращать механическую энергию в энергию электрического поля.

На сегодняшний день, во всех электротехнических устройствах используется явление электромагнитной индукции. На данном принципе, основывается большое количество разного рода электрических машин.

Электродвижущая сила индукции – что и как?

Теперь хочется рассмотреть величину и направление электродвижущей силы в проводнике. Следует отметить, что данная величина может напрямую зависеть от силовых линий в поле, которые пересекают проводник за одну единицу времени. Проще говоря, она зависит от скорости движения электрического проводника в магнитном поле.

К тому же, величина индуктированной электродвижущей силы зависит и от длины того элемента проводника, который пересекает силовые линии магнитного поля. Именно поэтому, чем большая часть пересекает силовые линии поля, тем большая часть электродвижущей силы в проводнике является индуктивной. Также, следует отметить, что чем больше сила магнитного поля или чем больше его индуктивная составляющая, тем больше электродвижущая сила в той части проводника, которая пересекает магнитное поле. Данная зависимость может быть выражена простой формулой – E = Blv, где:

— В – это магнитная индукция поля;

— l – это длина электропроводника;

— v – это скорость электрического проводника в магнитном поле.

Следует знать, что в проводнике, который перемещается в магнитном поле, электродвижущая сила может возникнуть только тогда, когда данный проводник пересекается с магнитными линиями поля. В том же случае, если проводник передвигается параллельно силовым линиям поля, то электродвижущая сила в нем возникнуть не может. К тому же, направление движения ЭДС может зависеть от того, в какую сторону направлено движения проводника электрического тока. Для того чтобы определить направление электродвижущей силы, следует использовать правило Буравчика.

Сравнение с разностью потенциалов

Электродвижущая сила и разность потенциалов в цепи очень похожие физические величины, так как оба измеряются в вольтах и определяются работой по перемещению заряда. Одно из основных смысловых различий заключается в том, что э. д. с. (E) вызывается путём преобразования какой-либо энергии в электрическую, тогда как разность потенциалов (U) реализует электрическую энергию в другие виды. Другие различия выглядят так:

  • E передаёт энергию всей цепи. U является мерой энергии между двумя точками на схеме.
  • Е является причиной U, но не наоборот.
  • Е индуцируется в электрическом, магнитном и гравитационном поле.
  • Концепция э. д. с. применима только к электрическому полю, в то время как разность потенциалов применима к магнитным, гравитационным и электрическим полям.

Вам это будет интересно Формула для определения напряжённости электрического поля

Напряжение на клеммах источника питания, как правило, отличается от ЭДС источника. Это происходит из-за наличия внутреннего сопротивления источника (электролита и электродов, обмоток генератора). Связывающая разность потенциалов и ЭДС источника тока формула выглядит как U=E-Ir. В этом выражении:

  • U — напряжение на клеммах источника;
  • r — внутреннее сопротивление источника;
  • I — ток в цепи.

Из этой формулы электродвижущей силы следует, что э. д. с. равна напряжению когда ток в цепи не течёт. Идеальный источник ЭДС создаёт разность потенциалов независимо от нагрузки (протекающего тока) и не обладает внутренним сопротивлением.

Как рассчитать электродвижущую силу индукции, формулы

Через силу тока

ЭДС самоиндукции зависит от изменения силы тока, при этом магнитный поток собственного поля через цепь пропорционален току в ней:

\(\varepsilon_{is\;}\;=\;-\;L\frac{\triangle I}{\triangle t}. \)

L здесь — индуктивность проводника.

Через угловую скорость

\(\varepsilon_i\;=\;В\omega SN\sin\left(\alpha\right). \)

B здесь — индукция магнитного поля, \(\omega\) — угловая скорость вращения рамки, S — площадь рамки, N — число витков, \(\alpha\) — угол между векторами индукции магнитного поля и скорости движения проводника.

Через площадь

Если магнитный поток изменяется без деформации витков, т. е. их количество и площадь не меняются, то можно найти электродвижущую силу индукции через площадь.
Угол \alpha между вектором магнитного поля и нормалью к плоскости витков будет равен:

\(2\mathrm\pi\;\times\;\mathrm v\;\times\;\mathrm t. \)Полный магнитный поток в момент времени t будет равен:

\(\psi_B\;=\;N\;\times\;B\;\times\;S\;\times\;\cos\left(\alpha\right)=\;N\;\times\;B\;\times\;S\;\times\;\cos\left(2\mathrm\pi\;\times\;\mathrm v\;\times\;\mathrm t\right).\)

Активное сопротивление

Можно представить себе электрическую цепь, в которой к клеммам батарейки через провод последовательно присоединены резистор и электрическая лампочка. Если замкнуть провода, лампочка загорится. Можно использовать вольтметр или мультиметр в соответствующем режиме работы, с помощью которых измеряется разность потенциалов между двумя точками цепи.

Измерив напряжение между клеммами и сравнив его с тем, которое имеется на проводах подсоединённых к лампочке, можно увидеть, что последнее меньше. Это связано с падением напряжения на впаянной в цепь радиодетали. Последняя оказывает противодействие электрическому току, затрудняя его прохождение.

Активным сопротивлением обладает каждая деталь, через которую проходит ток. У металлических проводов оно очень маленькое. Чтобы узнать величину сопротивления радиодетали, нужно изучить обозначение на ее корпусе. Если из рассматриваемой электроцепи убрать резистор, то сила тока, проходящего через лампочку, увеличится.

Формула для расчета активного сопротивления соответствует закону Ома:

R = U / I, где

  • R — величина активного сопротивления между двумя точками в цепи;
  • U — напряжение или разность потенциалов между ними;
  • I — сила тока на рассматриваемом участке цепи.

Для расчета активного сопротивления проводника формула будет другая:

где K-коэффициент поверхностного эффекта, который равен 1,

  • l — длина проводника,
  • s — площадь поперечного сечения,
  • p — “ро” удельное сопротивление.

Сопротивление принято измерять в Омах. Оно существенно зависит от формы и размеров объекта, через который протекает ток: сечения, длины, материала, а также от температуры. Действие активного сопротивления уменьшает энергию электрического тока, превращая её в другие формы (преимущественно в тепловую).